Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Sci ; 15(12): 4510-4518, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516096

RESUMO

Superlattice formation afforded by metal halide perovskite nanocrystals has been a phenomenon of interest due to the high structural order induced in these self-assemblies, an order that is influenced by the surface chemistry and particle morphology of the starting building block material. In this work, we report on the formation of superlattices from aluminum oxide shelled CsPbBr3 perovskite nanocrystals where the oxide shell is grown by colloidal atomic layer deposition. We demonstrate that the structural stability of these superlattices is preserved over 25 days in an inert atmosphere and that colloidal atomic layer deposition on colloidal perovskite nanocrystals yields structural protection and an enhancement in photoluminescence quantum yields and radiative lifetimes as opposed to gas phase atomic layer deposition on pre-assembled superlattices or excess capping group addition. Structural analyses found that shelling resulted in smaller nanocrystals that form uniform supercrystals. These effects are in addition to the increasingly static capping group chemistry initiated where oleic acid is installed as a capping ligand directly on aluminum oxide. Together, these factors lead to fundamental observations that may influence future superlattice assembly design.

2.
Dalton Trans ; 53(14): 6367-6376, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38497406

RESUMO

Dye-sensitized photoelectrodes may be used as heterogeneous components for fuel-forming reactions in photoelectrochemical cells. There has been increasing interest in developing Earth-abundant cheaper photosensitizers based on first-row transition metals. We describe here the synthesis, characterization, and study of the ground and excited state properties of three Cu(I) complexes bearing ligands with varying electron-accepting capacities and conjugation that may act as photosensitizers for wide bandgap semiconductors. Femtosecond transient absorption studies indicate that the nature of the final excited state is dictated by the extent of conjugation in the electron-accepting ligand, where shorter conjugation leads to the formation of a singly reduced ligand and longer conjugation leads to the formation of a ligand-centered final excited state. These complexes were surface anchored onto nanostructured NiO on conductive fluorine-doped tin oxide glass to fabricate photocathodes. It was found that even though the ligands with increasing conjugation have an effect on the formation of the final excited state in solution, all complexes exhibit similar photocurrents upon white light illumination, suggesting that charge transfer to NiO happens in advance of the formation of the final excited state.

3.
Chem Commun (Camb) ; 59(69): 10380-10383, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37548908

RESUMO

We report two photonic crystal-perovskite nanocrystal microbead hybrids with photoluminescence matching that of the parent nanocrystals but with increased photoluminescence quantum yields. Time-resolved photoluminescence spectroscopy quantifies the radiative enhancement afforded by the photonic environment of the microbeads. The reported hybrids also demonstrate markedly better resistance to degradation in water over 30 days of immersion.

4.
ACS Nano ; 15(11): 18085-18099, 2021 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-34705409

RESUMO

Kesterite Cu2ZnSnS4 (k-CZTS) nanocrystals have received attention for their tunable optoelectronic properties, as well as the earth abundance of their constituent atoms. However, the phase-pure synthesis of these quaternary NCs is challenging due to their polymorphism, as well as the undesired formation of related binary and ternary impurities. A general synthetic route to tackle this complexity is to pass through intermediate template nanocrystals that direct subsequent cation exchange toward the desired quaternary crystalline phase, particularly those that are thermodynamically disfavored or otherwise synthetically challenging. Here, working within this model multinary system, we achieve control over the formation of three binary copper sulfide polymorphs, cubic digenite (Cu1.8S), hexagonal covellite (CuS), and monoclinic djurleite (Cu1.94S). Controlled experiments with Cu0 seeds show that selected binary phases can be favored by the identity and stoichiometry of the sulfur precursor alone under otherwise comparable reaction conditions. We then demonstrate that the nature of the Cu2-xS template dictates the final polymorph of the CZTS nanocrystal products. Through digenite, the cation exchange reaction readily yields the k-CZTS phase due to its highly similar anion sublattice. Covellite nanocrystals template the k-CZTS phase but via major structural rearrangement to digenite that requires elevated temperatures in the absence of a strong reducing agent. In contrast, we show that independently synthesized djurleite nanorods template the formation of the wurtzite polymorph (w-CZTS) but with prominent stacking faults in the final product. Applying this refined understanding to the standard one-pot syntheses of k- and w-CZTS nanocrystals, we identify that these reactions are each effectively templated by binary intermediates formed in situ, harnessing their properties to guide the overall synthesis of phase-pure quaternary materials. Our results provide tools for the careful development of tailored nanocrystal syntheses in complex polymorphic systems.

5.
Coord Chem Rev ; 4292021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33678810

RESUMO

Porphyrins are important molecules widely found in nature in the form of enzyme active sites and visible light absorption units. Recent interest in using these functional molecules as building blocks for the construction of metal-organic frameworks (MOFs) have rapidly increased due to the ease in which the locations of, and the distances between, the porphyrin units can be controlled in these porous crystalline materials. Porphyrin-based MOFs with atomically precise structures provide an ideal platform for the investigation of their structure-function relationships in the solid state without compromising accessibility to the inherent properties of the porphyrin building blocks. This review will provide a historical overview of the development and applications of porphyrin-based MOFs from early studies focused on design and structures, to recent efforts on their utilization in biomimetic catalysis, photocatalysis, electrocatalysis, sensing, and biomedical applications.

6.
Inorg Chem ; 59(18): 12994-12999, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32909755

RESUMO

Copper(II)-based electrocatalysts for water oxidation in aqueous solution have been studied previously, but photodriving these systems still remains a challenge. In this work, a bis(diimine)copper(I)-based donor-chromophore-acceptor system is synthesized and applied as the light-harvesting component of a photoanode. This molecular assembly was integrated onto a zinc oxide nanowire surface, and upon photoexcitation, chronoamperometric studies reveal that the integrated triad can inject electrons directly into the conduction band of zinc oxide, generating oxidizing equivalents that are then transferred to a copper(II) water oxidation catalyst in aqueous solution, yielding O2 from water with a Faradaic efficiency of 76%.

7.
Chempluschem ; 84(9): 1432-1438, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31944060

RESUMO

Singlet and triplet excited-state dynamics of anthanthrene and anthanthrone derivatives in solution are studied. Triisopropylsilyl- (TIPS) or H-terminated ethynyl groups are used to tune the singlet and triplet energies to enable their potential applications in singlet fission and triplet fusion processes. Time-resolved optical and electron paramagnetic resonance (EPR) spectroscopies are used to obtain a mechanistic understanding of triplet formation. The anthanthrene derivatives form triplet states efficiently at a rate (ca. 107  s-1 ) comparable to radiative singlet fluorescence processes with approximately 30 % triplet yields, despite their large S1 -T1 energy gap (>1 eV) and the lack of carbonyl groups. In contrast, anthanthrone has a higher triplet yield (50±10 %) with a faster intersystem crossing rate (2.7 × 108  s-1 ) because of the n-π* character of the S1 ←S0 transition. Analysis of time-resolved spin-polarized EPR spectra of these compounds reveals that the triplet states are primarily generated by the spin-orbit-induced intersystem crossing mechanism. However, at high concentrations, the EPR spectrum of the 4,6,10,14-tetrakis(TIPS-ethynyl)anthanthrene triplet state shows a significant contribution from a non-Boltzmann population of the ms =0 spin sublevel, which is characteristic of triplet formation by singlet fission.

8.
Inorg Chem ; 57(21): 13246-13251, 2018 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-30299939

RESUMO

Isostructural metal-organic frameworks (MOFs) have been prepared from a variety of metal-oxide clusters, including transition metals, lanthanides, and actinides. Experimental and calculated shifts in O-H stretching frequencies for hydroxyl groups associated with the metal-oxide nodes reveal varying electronic properties for these units, thereby offering opportunities to tune support effects for other materials deposited onto these nodes.

9.
Nano Lett ; 18(11): 7104-7110, 2018 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-30296380

RESUMO

Molybdenum disulfide (MoS2) has been recognized as a promising cost-effective catalyst for water-splitting hydrogen production. However, the desired performance of MoS2 is often limited by insufficient edge-terminated active sites, poor electrical conductivity, and inefficient contact to the supporting substrate. To address these limitations, we developed a unique nanoarchitecture (namely, winged Au@MoS2 heterostructures enabled by our discovery of the "seeding effect" of Au nanoparticles for the chemical vapor deposition synthesis of vertically aligned few-layer MoS2 wings). The winged Au@MoS2 heterostructures provide an abundance of edge-terminated active sites and are found to exhibit dramatically improved electrocatalytic activity for the hydrogen evolution reaction. Theoretical simulations conducted for this unique heterostructure reveal that the hydrogen evolution is dominated by the proton adsorption step, which can be significantly promoted by introducing sufficient edge active sites. Our study introduces a new morphological engineering strategy to make the pristine MoS2 layered structures highly competitive earth-abundant catalysts for efficient hydrogen production.

10.
ACS Appl Mater Interfaces ; 10(28): 23802-23806, 2018 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-29979020

RESUMO

The photocatalytically driven partial oxidation of a mustard gas simulant, 2-chloroethyl ethyl sulfide (CEES), was studied using the perylene-based metal-organic framework (MOF) UMCM-313 and compared to the activities of the Zr-based MOFs: PCN-222/MOF-545 and NU-1000. The rates of CEES oxidation positively correlated with the singlet oxygen quantum yield of the MOF linkers, porphyrin (PCN-222/MOF-545) < pyrene (NU-1000) < perylene (UMCM-313). Subsequently, thin films of UMCM-313 and NU-1000 were solvothermally grown on a conductive glass substrate to minimize catalyst loading and prevent light scattering by suspended MOF particles. Using a conductive glass support, the initial turnover frequencies of the MOFs in the photocatalytic reaction improved by 10-fold.

11.
Chem Sci ; 8(1): 541-549, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-28616134

RESUMO

The design of efficient hydrogen-evolving photocathodes for dye-sensitized photoelectrochemical cells (DSPECs) requires the incorporation of molecular light absorbing chromophores that are capable of delivering reducing equivalents to molecular proton reduction catalysts at rates exceeding those of charge recombination events. Here, we report the functionalization and kinetic analysis of a nanostructured NiO electrode with a modified perylene-3,4-dicarboximide chromophore (PMI) that is stabilized against degradation by atomic layer deposition (ALD) of thick insulating Al2O3 layers. Following photoinduced charge injection into NiO in high yield, films with Al2O3 layers demonstrate longer charge separated lifetimes as characterized via femtosecond transient absorption spectroscopy and photoelectrochemical techniques. The photoelectrochemical behavior of the electrodes in the presence of Co(ii) and Ni(ii) molecular proton reduction catalysts is examined, revealing reduction of both catalysts. Under prolonged irradiation, evolved H2 is directly observed by gas chromatography supporting the applicability of PMI embedded in Al2O3 as a photocathode architecture in DSPECs.

13.
J Phys Chem A ; 121(8): 1607-1615, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28191955

RESUMO

The use of multiple chromophores as photosensitizers for catalysts involved in energy-demanding redox reactions is often complicated by electronic interactions between the chromophores. These interchromophore interactions can lead to processes, such as excimer formation and symmetry-breaking charge separation (SB-CS), that compete with efficient electron transfer to or from the catalyst. Here, two dimers of perylene bound either directly or through a xylyl spacer to a xanthene backbone were synthesized to probe the effects of interchromophore electronic coupling on excimer formation and SB-CS using ultrafast transient absorption spectroscopy. Two time constants for excimer formation in the 1-25 ps range were observed in each dimer due to the presence of rotational isomers having different degrees of interchromophore coupling. In highly polar acetonitrile, SB-CS competes with excimer formation in the more weakly coupled isomers followed by charge recombination with τCR = 72-85 ps to yield the excimer. The results of this study of perylene molecular dimers can inform the design of chromophore-catalyst systems for solar fuel production that utilize multiple perylene chromophores.

14.
Inorg Chem ; 55(23): 12281-12289, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934415

RESUMO

Two new covalently linked chromophore-CO2 reduction catalyst systems were prepared using a perylene chromophore and a bis[(dicyclohexylphosphino)ethyl]phenylphosphinopalladium(II) catalyst. The primary goal of this study is to probe the influence of photosensitizer attachment on the electrocatalytic performance. The position either para or meta to the phosphorus on the phenyl group of the palladium complex was linked via a 2,5-xylyl group to the 3 position of perylene. The electrocatalytic CO2 reduction activity of the palladium complex is maintained in the meta-linked system, but is lost in the para-linked system, possibly because of unfavorable interactions of the perylene chromophore with the glassy carbon electrode used. Following selective photoexcitation of the perylene, an enhanced perylene excited-state decay rate was observed in the palladium complexes compared to perylene attached to the free ligands. This decrease is accompanied by formation of the perylene cation radical, showing that electron transfer from perylene to the palladium catalyst occurs. Electron transfer and charge recombination were both found to be faster in the para-linked system than in the meta-linked one, which is attributed to stronger electronic coupling in the former. These results illustrate the need to carefully tune the electronic coupling between a photosensitizer chromophore and the catalyst to promote photodriven electron transfer yet inhibit adverse electronic effects of the chromophore on electrocatalysis.

15.
Dalton Trans ; 44(37): 16272-9, 2015 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-26278384

RESUMO

The synthesis, structures and photophysical properties of a series of bis-cyclometallated Ir(iii) complexes bearing phenylpyrazole (ppz) cyclometallating ligands and phenanthroline-based ancillary ligands containing thienyl- and bithienylamido groups are reported. All complexes are emissive in solution, while in PMMA films strong emission is observed from the thienylamido substituted complex with no emission from the bithienylamido complex. The bithienylamido substituted complex has an excited state lifetime which is significantly longer than the emission lifetime, attributed to the population of non-equilibrated (3)MLCT and (3)LC states in this complex. This represents a rare example of this unusual excited state behaviour. DFT calculations show that the emitting (3)MLCT state and the dark (3)LC state on bithiophene are close in energy and that a large change in the triplet state geometry occurs upon excitation that effectively lowers the energy of the (3)MLCT state below that of the dark (3)LC state. The low quantum yield of the bithienylamido complex is attributed to a structural rearrangement upon relaxation back to the ground state, opening a non-radiative decay pathway.

16.
J Am Chem Soc ; 136(6): 2637-41, 2014 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-24437369

RESUMO

We have developed the first example of a photoredox catalytic method for the formation of carbon-fluorine (C-F) bonds. The mechanism has been studied using transient absorption spectroscopy and involves a key single-electron transfer from the (3)MLCT (triplet metal-to-ligand charge transfer) state of Ru(bpy)3(2+) to Selectfluor. Not only does this represent a new reaction for photoredox catalysis, but the mild reaction conditions and use of visible light also make it a practical improvement over previously developed UV-mediated decarboxylative fluorinations.

17.
Chemistry ; 19(25): 8331-41, 2013 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-23613232

RESUMO

RuII complexes incorporating both amide-linked bithiophene donor ancillary ligands and laminate acceptor ligands; dipyrido[3,2-a:2',3'-c]phenazine (dppz), tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine (tpphz), and 9,11,20,22-tetraazatetrapyrido[3,2-a:2',3'-c:3'',2''-l:2''',3''']-pentacene (tatpp) exhibit long-lived charge separated (CS) states, which have been analyzed using time-resolved transient absorption (TA), fluorescence, and electronic absorption spectroscopy in addition to ground state electrochemical and spectroelectrochemical measurements. These complexes possess two electronically relevant ³MLCT states related to electron occupation of MOs localized predominantly on the proximal "bpy-like" portion and central (or distal) "phenazine-like" portion of the acceptor ligand as well as energetically similar ³LC and ³ILCT states. The unusually long excited state lifetimes (τ up to 7 µs) observed in these complexes reflect an equilibration of the ³MLCTprox or ³MLCTdist states with additional triplet states, including a ³LC state and a ³ILCT state that formally localizes a hole on the bithiophene moiety and an electron on the laminate acceptor ligand. Coordination of a ZnII ion to the open coordination site of the laminate acceptor ligand is observed to significantly lower the energy of the ³MLCTdist state by decreasing the magnitude of the excited state dipole and resulting in much shorter excited state lifetimes. The presence of the bithiophene donor group is reported to substantially extend the lifetime of these Zn adducts via formation of a ³ILCT state that can equilibrate with the ³MLCTdist state. In tpphz complexes, ZnII coordination can reorder the energy of the ³MLCTprox and ³MLCTdist states such that there is a distinct switch from one state to the other. The net result is a series of complexes that are capable of forming CS states with electron-hole spatial separation of up to 14 Å and possess exceptionally long lifetimes by equilibration with other triplet states.


Assuntos
Processos Fotoquímicos , Piridinas/química , Compostos de Rutênio/química , Elétrons , Ligantes , Estrutura Molecular , Fatores de Tempo
18.
J Am Chem Soc ; 135(7): 2419-22, 2013 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-23350926

RESUMO

Visible light irradiation of a ruthenium(II) quinone-containing complex, [(phen)(2)Ru(phendione)](2+) (1(2+)), where phendione = 1,10-phenanthroline-5,6-dione, leads to DNA cleavage in an oxygen independent manner. A combination of NMR analyses, transient absorption spectroscopy, and fluorescence measurements in water and acetonitrile reveal that complex 1(2+) must be hydrated at the quinone functionality, giving [(phen)(2)Ru(phenH(2)O)](2+) (1H(2)O(2+), where phenH(2)O = 1,10-phenanthroline-6-one-5-diol), in order to access a long-lived (3)MLCT(hydrate) state (τ ∼ 360 ns in H(2)O) which is responsible for DNA cleavage. In effect, hydration at one of the carbonyl functions effectively eliminates the low-energy (3)MLCT(SQ) state (Ru(III) phen-semiquinone radical anion) as the predominant nonradiative decay pathway. This (3)MLCT(SQ) state is very short-lived (<1 ns) as expected from the energy gap law for nonradiative decay, (1) and too short-lived to be the photoactive species. The resulting excited state in 1H(2)O(2+)* has photophysical properties similar to the (3)MLCT state in [Ru(phen)(3)](2+)* with the added functionality of basic sites at the ligand periphery. Whereas [Ru(phen)(3)](2+)* does not show direct DNA cleavage, the deprotonated form of 1H(2)O(2+)* does via a proton-coupled electron transfer (PCET) mechanism where the peripheral basic oxygen sites act as the proton acceptor. Analysis of the small molecule byproducts of DNA scission supports the conclusion that cleavage occurs via H-atom abstraction from the sugar moieties, consistent with a PCET mechanism. Complex 1(2+) is a rare example of a ruthenium complex which 'turns on' both reactivity and luminescence upon switching to a hydrated state.


Assuntos
Complexos de Coordenação/química , DNA/química , Elétrons , Rutênio/química , Água/química , Estrutura Molecular
19.
Inorg Chem ; 50(20): 9939-41, 2011 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-21936493

RESUMO

Ruthenium(II) polypyridyl complexes with pendant bithienyl ligands exhibiting unusually long-lived (τ ~ 3-7 µs) charge-separated excited states and a large amount of stored energy (ΔG° ~ 2.0 eV) are reported. A long-lived ligand-localized triplet acts as an energy reservoir to fuel population of an interligand charge-transfer state via an intermediate metal-to-ligand charge-transfer state in these complexes.

20.
Inorg Chem ; 50(11): 4956-66, 2011 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-21548591

RESUMO

The photophysical behavior for two photochromic Pt-terpyridine acetylide complexes containing pendant dithienylethenes (DTEs) bound to the metal through the alkynyl linkage is presented. Selective excitation of the Pt complex with visible light resulted in the metal-sensitized ring closing of the DTE unit. The central purpose of this study was to understand how excited state interactions govern the photophysics by correlating differences in the linkage of the two components with differences in the intramolecular energy transfer processes that occur between the Pt complex and the DTE. A series of model complexes without photochromic ligands were prepared and studied to elucidate the contributions of the triplet metal-to-ligand charge transfer and triplet intraligand states. It is demonstrated that reducing the orbital overlap of the metal-based and intraligand states by lengthening the linkage and eliminating a conjugated pathway is effective at dramatically decreasing the efficiency of intramolecular energy transfer. This is evidenced by the appearance of Pt-terpyridine based phosphorescence and a significant decrease in the observed rate of metal-sensitized ring closing of the DTE.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...